Approximating Optimal State Estimation
نویسندگان
چکیده
Minimizing forecast error requires accurately specifying the initial state from which the forecast is made by optimally using available observing resources to obtain the most accurate possible analysis. The Kalman filter accomplishes this for linear systems and experience shows that the extended Kalman filter also performs well in nonlinear systems. Unfortunately, the Kalman filter and the extended Kalman filter require computation of the time dependent error covariance matrix which presents a daunting computational burden. However, the dynamically relevant dimension of the forecast error system is generally far smaller than the full state dimension of the forecast model which suggests the use of reduced order error models to obtain near optimal state estimators. A method is described and illustrated for implementing a Kalman filter on a reduced order approximation of the forecast error system. This reduced order system is obtained by balanced truncation of the Hankel operator representation of the full error system. As an example application a reduced order Kalman filter is constructed for a time-dependent quasi-geostrophic storm track model. The accuracy of the state identification by the reduced order Kalman filter is assessed and comparison made to the state estimate obtained by the full Kalman filter and to the estimate obtained using an approximation to 4D-Var. The accuracy assessment is facilitated by formulating the state estimation methods as observer systems. A practical approximation to the reduced order Kalman filter that utilizes 4D-Var algorithms is examined.
منابع مشابه
A Computational Method for Solving Optimal Control Problems and Their Applications
In order to obtain a solution to an optimal control problem, a numerical technique based on state-control parameterization method is presented. This method can be facilitated by the computation of performance index and state equation via approximating the control and state variable as a function of time. Several numerical examples are presented to confirm the analytical findings and illus...
متن کاملDistributed Approximating Functional Networks
We present a novel polynomial functional neural networks using Distributed Approximating Functional (DAF) wavelets (infinitely smooth filters in both time and frequency regimes), for signal estimation and surface fitting. The remarkable advantage of these polynomial nets is that the functional space smoothness is identical to the state space smoothness (consisting of the weighting vectors). The...
متن کاملA meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions
In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...
متن کاملOptimal Reduction of Multivariate Dirac Mixture Densities
This paper is concerned with the optimal approximation of a given multivariate Dirac mixture, i.e., a density comprising weighted Dirac distributions on a continuous domain, by an equally weighted Dirac mixture with a reduced number of components. The parameters of the approximating density are calculated by minimizing a smooth global distance measure, a generalization of the well-known Cramér-...
متن کاملSub-optimal Estimation of HIV Time-delay Model using State-Dependent Impulsive Observer with Time-varying Impulse Interval: Application to Continuous-time and Impulsive Inputs
Human Immunodeficiency Virus (HIV) weakens the immune system in confronting various diseases by attacking to CD4+T cells. In modeling HIV behavior, the number of CD4+T cells is considered as the output. But, continuous-time measurement of these cells is not possible in practice, and the measurement is only available at variable intervals that are several times bigger than sampling time. In this...
متن کاملNew Optimal Observer Design Based on State Prediction for a Class of Non-linear Systems Through Approximation
This paper deals with the optimal state observer of non-linear systems based on a new strategy. Despite the development of state prediction in linear systems, state prediction for non-linear systems is still challenging. In this paper, to obtain a future estimation of the system states, initially Taylor series expansion of states in their receding horizons was achieved to any specified order an...
متن کامل